- The global market for 98% Anatase Titanium Dioxide Paint Grade manufacturers is highly competitive, with key players constantly innovating to stay ahead. Some of these renowned manufacturers invest heavily in research and development to explore new synthesis methods and surface treatments, further optimizing the properties of their products.
Lithopone 30% has a lower coverage power than titanium dioxide. For this reason, Lithopone 30% can only partially substitute titanium dioxide, between 5 and 40%.
In a study published in 2022 in the journal Particle and Fibre Technology, researchers examined the impact of maternal exposure to titanium dioxide nanoparticles in newborn offspring mice. They found that “a chronic exposure to TiO2 NPs during pregnancy alters the respiratory activity of offspring, characterized by an abnormally elevated rate of breathing.” Breathing was also shown to be “significantly and abnormally accelerated,” and the ability for neural circuitry to effectively adjust breathing rates was impaired. The researchers concluded: “Our findings thus demonstrate that a maternal exposure to TiO2 NPs during pregnancy affects the normal development and operation of the respiratory centers in progeny.”
PRINCIPALES UTILISATIONS
TiO2 is typically thought of as being chemically inert, meaning it does not react with other chemicals and is, therefore, a stable substance that can be used in many different industries and for various applications.
The inception and evolution of lithopone can be traced back through various industries and diverse applications. Revered for its robust hiding power, this white pigment, also called sulfide of zinc white, has been an invaluable asset to industries requiring a durable and reliable white pigment. Lithopone was an economical and functional solution as an alternative to lead carbonate, which is prone to change, and zinc oxide, known for its brittleness.
The integrity of surface skin cells was evaluated with and without solar simulated irradiation. The integrity of the stratum corneum was significantly lower in individuals treated with P25TiO2NPs under the light in comparison to the ones that received the functionalized nanoparticles. Cell membrane suffering is evident (Fig. 9), and it is in accordance with the ROS levels and macromolecule oxidation found in vitro for the irradiated P25TiO2NPs. Disruption of the superficial skin layer was observed in all animals treated with no functionalized nanoparticles, under irradiation. This data expands the findings by the group of Professors Fubini and Fenoglio, who showed that P25TiO2NPs could impact the lipid structure at the top few microns of the stratum corneum [55]. Control skin under irradiation and without any topic formulation did not show changes in cell structure.
The chemical is also found in common household and industrial products such as paints, coatings, adhesives, paper, plastics and rubber, printing inks, coated fabrics and textiles, as well as ceramics.


Application:




zinc oxide content, %
Because of health risks, France banned titanium dioxide as a food additive in 2020. Two years later the European Union also banned titanium dioxide as a food additive.


In food, titanium dioxide is often used as an artificial color additive. Tasha Stoiber, senior scientist at the consumer health nonprofit Environmental Working Group, says titanium dioxide can generally be thought of as a paint primer – it often goes on a hard-shelled candy like Skittles before the color is added to give it a uniform shine.
Studies suggest that people are more likely to buy and eat foods that are brighter or more vibrant in color. And titanium dioxide is one way to make that happen. You can find it in food products like candy, coffee creamer, baking and cake decorations, and white sauces.
This classification was given, as some animal studies found that inhaling titanium dioxide dust might cause the development of lung tumors. However, IARC concluded that food products containing this additive do not pose this risk (11).
Lithopone or sulphide of zinc white has been in general use for twenty years or more in many industries where a white pigment of considerable body or hiding power is required that is not subject to change like lead carbonate and has not the brittle character of zinc oxide, besides being sold at a lower figure than either of these. Nevertheless it is still comparatively new to the general painting trade. Because of our tariff protection its manufacture in this country has made great progress. Yet in spite of this and the duty imposed on it, the imports are still in excess of the quantity manufactured here. A short history of its origin will no doubt prove of interest to our readers.